| Grant number: | 15/09202-0 |
| Support Opportunities: | Regular Research Grants |
| Start date: | July 01, 2016 |
| End date: | September 30, 2018 |
| Field of knowledge: | Biological Sciences - Genetics - Molecular Genetics and Genetics of Microorganisms |
| Principal Investigator: | Anete Pereira de Souza |
| Grantee: | Anete Pereira de Souza |
| Host Institution: | Centro de Biologia Molecular e Engenharia Genética (CBMEG). Universidade Estadual de Campinas (UNICAMP). Campinas , SP, Brazil |
| City of the host institution: | Campinas |
| Associated researchers: | Clelton Aparecido dos Santos ; Maria Augusta Crivelente Horta |
Abstract
The study of the constitution of the genome and gene expression regulation of activities of the fungus Trichoderma harzianum provide important information about the genetic mechanisms of biomass degradation that the fungus uses, information that could be used for other species of filamentous fungi with potential for biodegradation. In this way it is proposed in this project the analysis of genomic regions of Trichoderma harzianum involved in cellulose and hemicellulose degradation and the study of genes and genomic sequences related to the regulation and gene expression of enzymes that promote degradation of lignocellulosic compounds. Previous studies from our group determined the fungus transcriptome in biodegradation conditions through next generation sequencing, annotation of genes and determination of gene expression levels related to degradation, especially of cellulosic and hemicellulose fractions. Group Recent results obtained by sequencing the clones BACs (Bacterial Artificial Chromosome) determined the existence of genomic regions containing groups of genes involved in the degradation of biomass as well as their likely accessory genes and their regulatory sequences responsible for its transcription. The extent of the studies associated with the results recently obtained by our group will bring great impact on the findings of the regulation and expression of genes responsible for biodegradation in T. harzianum. In this way, the next step is the analysis and determination of the regulatory mechanisms of gene expression, proposed in this project. For the study aims to carry out the fermentation of other strains of T. harzianum (CBMAI CBMAI 0020 and 0179) and Trichoderma reesei (CBMAI 711), determine the transcriptome and the exoproteoma of fermentation. Then, determine the potentially expressed genes involved in degradation reactions by analysis of the overall transcript and analyzing the genomic structure (sequences, genes and motifs) present in regions of the genome of T. harzianum IOC3844 compared with the strains CBMAI 0020, CBMAI 0179 and T. reesei. This analysis will be conducted through annotation of BAC sequences previously selected from the existing BACs library in the laboratory (for IOC3844 lineage) and two other small libraries to be built for CBMAI 0020 and CBMAI lines 0179. Thus, for analyzing the differences in expression between the genes, proteins present in exoproteoma and transcriptome profile of the different strains is expected to identify elements in the BAC sequences from the three different strains which may account for the difference in gene expression. (AU)
| Articles published in Agência FAPESP Newsletter about the research grant: |
| More itemsLess items |
| TITULO |
| Articles published in other media outlets ( ): |
| More itemsLess items |
| VEICULO: TITULO (DATA) |
| VEICULO: TITULO (DATA) |