Busca avançada

Aprendizado de máquina para WebSensors: algoritmos e aplicações

Processo: 14/08996-0
Linha de fomento:Auxílio à Pesquisa - Regular
Vigência: 01 de agosto de 2014 - 31 de julho de 2016
Área do conhecimento:Ciências Exatas e da Terra - Ciência da Computação - Metodologia e Técnicas da Computação
Pesquisador responsável:Solange Oliveira Rezende
Beneficiário:
Instituição-sede: Instituto de Ciências Matemáticas e de Computação (ICMC). Universidade de São Paulo (USP). São Carlos, SP, Brasil
Pesq. associados: Bruno Magalhães Nogueira ; Gustavo Enrique de Almeida Prado Alves Batista ; Ricardo Marcondes Marcacini ; Veronica Oliveira de Carvalho
Assunto(s):Inteligência artificial  Mineração de texto  Agrupamento de dados  Aprendizado computacional  Algoritmos  Classificação  Tomada de decisão 

Resumo

A popularização de plataformas web para publicação de conteúdo textual tem motivado o desenvolvimento de métodos para extração automática de conhecimento implícito nos textos. Em particular, uma nova gama de estudos e aplicações tem sido proposta para explorar a web como um grande e poderoso "sensor social", permitindo identificar e monitorar vários tipos de eventos a partir de textos publicados em portais de notícias e redes sociais, como detecção de epidemias, análise de sentimentos, e a extração de indicadores políticos e econômicos. Atualmente, a construção de um sensor da web (websensor) é uma tarefa complexa, pois depende de especialistas de domínio para definição dos parâmetros do sensor, isto é, expressões para busca, filtros e monitoramentos de conteúdo textual da web. A necessidade de especialistas de domínio geralmente limita as aplicações envolvendo websensors, uma vez que em muitos problemas não há compreensão clara dos fenômenos que se deseja monitorar. Em vista disso, neste projeto de pesquisa são investigados métodos de aprendizado de máquina para apoiar a construção automática de websensors. A ideia básica é utilizar uma amostra de documentos textuais do domínio do problema e, em conjunto com algoritmos de aprendizado de máquina semi/não supervisionados, extrair padrões dos textos e assim apoiar a construção de websensors. Dessa forma, espera-se reduzir a dependência de um especialista para definição dos parâmetros dos sensores. Cada websensor aprendido a partir dos textos representa um determinado fenômeno relacionado ao domínio do problema que, então, pode ser monitorado ao longo do tempo e utilizado para apoiar processos de tomada de decisão. (AU)

Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio:
Algoritmos facilitam classificação automatizada de textos da internet